

Ministry of Higher Education

and Scientific Research
  

University of Carthage
  

National Institute of Applied
Sciences and Technology

Summer Internship Report
2020/2021

Software engineering
4th year

Subject :

Troubleshooting a production environment, updating a
Nodejs app to the latest version and containerizing it

By : Sirine Achour

With:
The University of Michigan

Academic year : 2020/2021

Ministry of Higher Education
and Scientific Research

  
University of Carthage

  
National Institute of Applied

Sciences and Technology

Summer Internship Report

Software engineering
4th year

Subject :

Troubleshooting a production environment and updating a
Nodejs app to the latest version and containerizing it

By : Sirine Achour

With :

The University Of Michigan

Under the supervision of:
Dr. Bruce Maxim

Notice from the Internship Committee

Academic Year : 2020/2021

Acknowledgments

I would like to express my gratitude to the UM team for giving me this opportunity
to work on interesting projects as well as for creating a stress free environment for me to
learn and flourish.

I would also like to express my deepest gratitude to Mr.Jeremy York for his help and
guidance as well as his due diligence throughout this entire internship.

Finally, I want to thank my family and friends for their constant support and encour-
agement.

Contents

Introduction 1

1 Introduction . 1

2 Presenting the University of Michigan . 1

3 Goals and specifications . 2

3.1 Troubleshooting an AWS production instance 2

3.2 Updating the NodeJS app to the latest version of NodeJS 2

3.3 Migrating the NodeJS app from the AWS instance to the UM
Container Service . 2

Work 3

4 Internship journal . 3

5 Realized work . 4

5.1 Troubleshooting production site . 4

5.2 Update site to the latest NodeJS version 4

5.2.1 Moving the app from BitBucket to GitHub 5

5.2.2 Finding extraneous files 5

5.2.3 Studying use of database tables in the app 6

5.2.4 Merging production and development code 7

5.2.5 Merging production and development databases 7

5.2.5.1 Database . 7

5.2.5.2 Finding the data 7

5.2.5.3 Primary keys . 7

5.2.5.4 Foreign keys . 8

5.2.5.5 Generating the SQL queries 9

5.3 Containerizing the site . 9

Contents

6 Future work . 10

Conclusion 11

7 Consolidation of skills . 11

8 Conclusion . 11

List of Figures

1 Logo of the University of Michigan . 2

2 Gantt diagram of internship timeline . 3

3 Translation Networks production site . 4

4 List of files generated by automation script 6

5 Declaration of ”collection_comments” table 8

6 Declaration of ”collections” table . 8

7 Contents of dockerfile . 10

List of acronyms

• UM University of Michigan

• Dev Development

• Prod Production

• App Application

• AWS Amazon Web Services

• EC2 Amazon Elastic Compute Cloud

• SQL Structured Query Language

Introduction

1 Introduction

Within the scope of my university studies, I carried out a remote summer internship

with The University of Michigan that lasted one month from 15/06/2021 to 15/07/2021.

This internship was an excellent opportunity for me to learn new technologies and

attain new skills as well as put into use my competencies and help move along the UM

research team projects

During my work with the UM research team, I was given a list of tasks that ranged

from troubleshooting an AWS production instance, to analyzing and studying the use of

database tables to containerizing a NodeJS website. All these tasks had one goal, which

is updating and getting the Translation Networks website to work.

This website is a project that was contributed to by a team of art, history, and IT

professors as well as librarians and other university students. It is basically a collection

of digital tools that assist students in connecting ideas, creative activities, and sources.

One of the main goals of the tools is to promote a better knowledge of translation.

2 Presenting the University of Michigan

The University of Michigan is an American public university that was founded in 1817 in

Detroit. It is a highly ranked, highly respected university that is most known for being

ranked number 1 in research volume among U.S. public research universities.

It offers different degrees for various majors such as doctoral degrees in the humanities,

social sciences, and STEM fields (science, technology, engineering, and mathematics)

as well as professional degrees in architecture, business, medicine, law, public policy,

pharmacy, nursing, social work, public health, and dentistry.

1

Introduction

Figure 1: Logo of the University of Michigan

3 Goals and specifications

I was asked to work on 3 different projects that revolve around the Translation Networks

website:

3.1 Troubleshooting an AWS production instance

The Translation Networks site (translationnetworks.com), hosted on an AWS EC2 in-

stance, has stopped working several months ago. This project involves getting the pro-

duction instance to work again, as well as locating the root cause of the site going down.

3.2 Updating the NodeJS app to the latest version of NodeJS

The Translation Networks site is running on a very early version of NodeJS from 2015.

This project is concerned with updating the newest NodeJS version as well as auditing

files and removing extraneous files that are no longer (or were never) in use.

3.3 Migrating the NodeJS app from the AWS instance to the

UM Container Service

This requires figuring out how to package the current NodeJS site into a container and

run it on the UM container service which is a service providing a high availability, secure

environment for hosting containerized applications and services.

2

Introduction

4 Internship journal

Figure 2: Gantt diagram of internship timeline

3

Introduction

5 Realized work

5.1 Troubleshooting production site

The production site, running the AWS EC2 instance, had been down for a few months.

After some digging, I found that firstly, the app’s process hasn’t even been running on

the instance, so I simply ran it and I was surprised to find it working. Then after a short

while, it stopped working again. So, I kept digging through the instance configurations

and the site’s code and I discovered that the site listens only on port 8080 and if reached

using that port, it works just fine. I concluded, then, that the AWS instance is supposed

to be forwarding the requests incoming on port 80 to port 8080, but this port forwarding

wasn’t set in place correctly. So, I did just that using iptables rules and problem solved.

Figure 3: Translation Networks production site

5.2 Update site to the latest NodeJS version

This project had steps set in place, which I followed and finalized one by one :

4

Introduction

5.2.1 Moving the app from BitBucket to GitHub

Since the owner of the BitBucket repository isn’t someone on the team that I worked

with, and since said repository is private, I started by cloning the code to my computer,

I then, added an upstream remote URL leading to the new repository. Finally, I pushed

to upstream. This was done so that the old commits from the BitBucket repository were

still traceable from the new GitHub repository.

I made sure to push the production code to the ”main” branch and the development code

to the ”dev” branch.

5.2.2 Finding extraneous files

This step is about finding the files in the app’s code that are not being used and will not

be of benefit for future development. I wrote a python script to automate this step. This

script loops all files of the app and looks for any call for them in other files then generates

the list of files that have never been called/imported by another file. Finally, I manually

looped through this list to assess the benefit that each file might bring, then I finished by

deleting the files that are of no use to the team.

5

Introduction

Figure 4: List of files generated by automation script

5.2.3 Studying use of database tables in the app

The point of this task is to judge the legitimacy of an existing excel spreadsheet that is

supposed to contain a list of all of the database tables along with whether or not they

have been used in the code. This spreadsheet is part of the documentation that the team

is trying to maintain and update regularly for research and development purposes.

I started by determining what type of database was being used and found that it was a

MySQL database. I, then, located the database on the server and sent its SQL dump to

my computer. Next, I wrote a python script that finds all the database tables that have

been referenced in the code and saves them to a text file. Then, I wrote another script

that compares the contents of that file to the spreadsheet and generates 3 lists: a list of

tables used in the code but are marked as ”not used” in the spreadsheet, a list of tables

that are ”used” in the spreadsheet but never referenced in the code and finally a list of

tables that are referenced in the code but not mentioned in the sheet.

6

Introduction

5.2.4 Merging production and development code

This task was fairly simple. I merged the ”dev” branch into ”main” and resolved the

resulting conflicts.

5.2.5 Merging production and development databases

I started by comparing the development and production databases and found that there

are no differences in the schemas.

As for the data, I wrote a python script that finds the missing ”INSERT INTO” SQL

statements in each database dump and saves them to a file. When looking for queries

that are in the development database but are missing from the production database, I

found 2470 entries. However, when trying the other way around, I found 13826 queries.

In conclusion, it is smart to pump the missing data into the production database rather

than the development database.

After determining what I will be merging into, I decomposed the issue of merging the 2

databases into 5 main parts:

5.2.5.1 Database

I started by getting familiar with the database and its schema.

5.2.5.2 Finding the data

Problem : Finding which data exists in the development database but not in the pro-

duction database.

Solution : I exported the 2 databases (schema + data). The python script, then, loops

through both SQL files to find the ”INSERT INTO” SQL statements that are part of the

development database dump file but the production database’s.

5.2.5.3 Primary keys

Problem : Some tables have auto-incremented primary keys. This means that when

inserting a new entry in the table, we must pass it a NULL value for the primary key.

MySQL will then automatically generate a viable value for that entry. So, if we were

to insert an entry from the development database, into a table with the ”AUTOINCRE-

MENT” feature, we might run into the issue of having duplicate primary keys for different

data. This will raise an error and abort the insertion of the new entry.

7

Introduction

Solution : I went through the ”CREATE TABLE” SQL statements and generated a

list of tables having an auto-incremented primary key. I, then, collected all the new data

that is being inserted into the tables in that list and set to NULL all the primary keys.

5.2.5.4 Foreign keys

Problem : The issue here is with the foreign keys pointing to the primary keys that we

previously set to NULL.

Another issue is that in the current database schema, there are no actual foreign keys

relations set in place. These relations are implied and can be logically concluded but are

not recognized by MySQL. This makes the task of spotting the actual foreign keys very

hard.

A prime example of this issue is displayed in the ”collection_comments” and ”comments”

tables.

Figure 5: Declaration of ”collection_comments” table

Figure 6: Declaration of ”collections” table

It is obvious that the column ”collection” in ”collection_comments” is referencing a

collections entry but the actual relation is not defined.

8

Introduction

It becomes even harder to spot these relationships in the script when the column name

doesn’t match the referenced table name (example : ”work_objects” is being referenced

in ”work_objects_log” but the column is named ”work” rather than ”work_object”)

Solution : I kept track of the primary keys that we set to NULL then looped through

the insert queries to find where these primary keys were referenced. I, then, saved the

queries in a way that would allow us to trace the foreign key back to its corresponding

primary key.

5.2.5.5 Generating the SQL queries

At this point, I had successfully generated a list of ”INSERT INTO” queries that either do

not have NULL primary keys or did not get referenced by other entries. The remaining

issue here is to figure out how to order the remaining ”INSERT INTO” queries and how

to generate them with the newly assigned primary keys. My internship, unfortunately,

ended before I can finish this task.

5.3 Containerizing the site

Before working on the dockerfile, I noticed that the project was lacking a ”package.json” file

(this file is necessary for automatically installing the dependencies) and that the ”node_-

modules” folder contained some scripts that the old team developed. I moved those scripts

to their own separate folder (called ”js-scripts”) since ”node_modules” contents should be

generated by ”npm i” and should not be pushed to GitHub (meaning it shouldn’t contain

anything that isn’t installed via npm).

After re-organizing the code, I wrote a dockerfile that exposes port 8080 since the app

listens on that port and when running the container, port forwarding must be set up by

linking both ports 80 and 8080 to port 80.

9

Introduction

Figure 7: Contents of dockerfile

The dockerfile uses the node:14.17 image, runs ânpm i –productionâ to install the

app’s dependencies, and then calls out ”start_script.sh”.

In this script, I started by installing the dependencies needed to run the Redis server

(which is needed by the app to manage sessions). Then, I installed redis-server and ran

it in the background. Finally, I ran the app in production mode.

I opted for running both the Redis server and the app in the same container (as opposed

to writing up a docker-compose file and having Redis server on one container and the

app on another and then linking them with a network) because had I chosen the other

option, I would have had to change in the app’s code where the Redis server is called

using ”localhost”. I thought it would be better and less confusing for the development to

leave the app’s code untouched.

6 Future work

During this month, I have managed to finish most of the work needed on the previously

mentioned projects. All that is left to do is :

- Finalize the database merge script. (Project #2)

- Move the newly merged database to the container service. (Project #3)

10

Introduction

- Deploy the container on the container service. (Project #3)

7 Consolidation of skills

I found that the skills that have been most useful to me during this internship are those

below :

- Web development : This helped greatly in understanding how the old app was

structured and in understanding the purpose of each file.

- Relational databases : This was necessary for understanding the database’s schema and

for the database merge task.

- Python

- Git

- Automation : This made a lot of tasks much easier to accomplish and saved me a lot

of repetitive manual work.

- Problem solving

- Complexity of algorithms : This helped with creating optimal code for the automation

scripts.

I also acquired new skills that will surely be of benefit to me in the future :

- Docker

- Familiarizing with AWS instances

- Troubleshooting network-related issues.

8 Conclusion

In this report, I attempted to give an account of the knowledge gained during this month

of summer internship. This has been a wonderful learning experience as well as a great

opportunity to apply the theoretical knowledge learned during my studies.

Thank you for reading.

11

	Introduction
	Introduction
	Presenting the University of Michigan
	Goals and specifications
	 Troubleshooting an AWS production instance
	 Updating the NodeJS app to the latest version of NodeJS
	 Migrating the NodeJS app from the AWS instance to the UM Container Service
	Work
	Internship journal
	Realized work
	Troubleshooting production site
	Update site to the latest NodeJS version
	Moving the app from BitBucket to GitHub
	Finding extraneous files
	Studying use of database tables in the app
	Merging production and development code
	Merging production and development databases
	Database
	 Finding the data
	Primary keys
	 Foreign keys
	Generating the SQL queries

	Containerizing the site

	Future work
	Conclusion
	Consolidation of skills
	Conclusion

		2021-08-01T17:52:26-0400
	Bruce Maxim

