
National Institute of Applied Science And Technology

UNIVERSITY OF CARTHAGE

End of Year Project

Branch: Software Engineering

Collect Connect Game Development with NLP and

Image Similarity

Presented by

ACHOUR Sirine

KACEM Farah

DERBEL Sahar

Under the supervision of

SFAXI Lilia

Academic Year: 2020/2021

ACKNOWLEDGEMENTS

We have had the utmost pleasure of working with our INSAT supervisor Lilia Sfaxi, who has

shown consistent support throughout the realization of this project. We would also like to

thank the Client team for the opportunity they gave us to work with them on this project, and

for the fun we had throughout. Our thanks, also, to our families.

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 General introduction . 1

1.2 Context . 3

1.2.1 Concept . 3

1.2.2 Requirements . 4

1.3 Project Timeline . 5

1.4 Conclusion . 5

2 Game Design and Development 7

2.1 Introduction . 7

2.2 Methodology . 7

2.3 Functional Requirements . 8

2.3.1 Out­of­game functionalities . 9

2.3.2 In game functionalities . 12

2.3.3 Scoring . 17

2.3.4 Design . 17

2.4 Notions and Technologies . 21

2.5 Non Functional Requirements . 21

2.5.1 Availability and Performance . 21

CONTENTS

2.5.2 Portability . 22

2.6 Conclusion . 22

3 Database and API 23

3.1 Introduction . 23

3.2 Database . 24

3.2.1 Purpose . 24

3.2.2 Design . 26

3.3 API . 29

3.3.1 Purpose . 29

3.3.2 Design . 30

3.3.3 Access levels . 33

3.3.4 API endpoints . 34

3.4 Non­functional requirements . 37

3.4.1 Portability : . 37

3.4.2 Documentation : . 37

3.4.3 Scalability and Availability : . 37

3.5 Conclusion . 38

4 AI Judge 39

4.1 Methodology . 39

4.2 Dataset . 41

4.3 Natural language processing . 41

4.3.1 Text preprocessing . 41

4.3.2 Model implementaion: . 42

4.4 Computer vision . 45

4.4.1 Models: . 45

4.4.2 Results: . 46

4.4.3 Model implementation: . 47

4.4.4 Computer vision output: . 48

Achour Sirine, Derbel Sahar and Kacem Farah iii

CONTENTS

4.4.5 Weighting the data: . 48

4.5 Flask backend: . 49

4.6 Non­funtional requirements . 49

4.6.1 Portability: . 49

4.6.2 Documentation: . 49

4.6.3 Modifiability: . 49

4.6.4 Performance: . 49

4.6.5 Scalability: . 49

4.7 Conclusion: . 50

5 Evaluation and Deployment 51

5.1 Introduction . 51

5.2 Evaluation . 51

5.2.1 Client feedback and Playtesting . 51

5.2.2 Performance . 54

5.3 Deployment . 55

5.4 Conclusion . 55

iv Achour Sirine, Derbel Sahar and Kacem Farah

List of Figures

1.1 An example of a card: “Caravaggio’s Medusa” 3

1.2 Gantt diagram of project timeline . 6

2.1 Out­of­game Use Case diagram . 9

2.2 Login, Register and Recover screens. 10

2.3 Home, Scoreboard and Collection screens. 11

2.4 Gameplay Use Case diagram . 12

2.5 Game board . 13

2.6 Tutorial screens and settings menu. 13

2.7 Non playable card, front and back. 14

2.8 Playable card, front and back. 14

2.9 Accepted link screen . 15

2.10 Rejected link screen . 15

2.11 Pause and settings screen . 16

2.12 Final game screens . 16

2.13 Screen Flow diagram for unity game . 18

2.14 Software class diagram . 20

3.1 Database simplified schema . 26

3.2 Database detailed schema . 28

3.3 API modules diagram . 30

3.4 AuthModule services class diagram . 31

3.5 CardModule services class diagram . 32

LIST OF FIGURES

3.6 GameModule services class diagram . 33

4.1 Crisp­DM methodology[2] . 40

4.2 Jaccard similarity formula . 42

4.3 ResNet­50 model architecture [7] . 46

4.4 Sample of cards to test models on . 47

4.5 Turicreate output . 48

5.1 Feelings on the scoring system . 53

5.2 Feedback on the scoring system . 53

5.3 Feedback on the AI as a character . 53

5.4 Feedback on the performance aspect . 54

5.5 Deployment diagram . 55

vi Achour Sirine, Derbel Sahar and Kacem Farah

List of Tables

3.1 Register endpoint . 34

3.2 Recover endpoint . 34

3.3 Get percentage endpoint . 35

3.4 Login endpoint . 35

3.5 New game endpoint . 35

3.6 Quit game endpoint . 35

3.7 Play card endpoint . 36

3.8 Add percentage endpoint . 36

3.9 Get collection by name . 37

3.10 Get card by name endpoint . 37

3.11 Add new card endpoint . 37

4.1 Card names and their corresponding descriptions 43

4.2 Cards name and their corresponding descriptions 44

4.3 Comparison between different image similarity models 47

Chapter 1

Introduction

1.1 General introduction

AI and games have been mashed together since the years of Nim and Pong. It was a matter of

creating games that were playable on your own, but emulated the distinct feeling of playing with,

or against, someone. AI has gone through to revolutionize play, with it beating chess champi­

ons in 1997, and Go champions as recently as 2016. Conversely, game development has been

on the rise as a career choice, since it requires the perfect mix of creativity and programming

knowledge.

The University of Michigan provides courses on game development, the cultural impact of

games, as well as machine learning and AI. This project follows this trend of mashing culture

and programming to create impactful interactive games to the larger public. More specifically,

the Client is interested in different aspects of translation, finding connections between translated

works, library artworks and such, as well as cultural collections : Objects that fit to a theme and

that can be bagged together into a coherent unit. The University of Michigan Museums and

Libraries contain a vast selection of artworks, books, and games. This body of knowledge and

fun is mostly left undiscovered by the students that attend there.

From this stems the need to help students discover artwork and find joy in learning. Thus were

created the Translation Networks. They encompass various projects that gravitate around the

idea of a platform where students can look up connections between catalog items that they have

CHAPTER 1. INTRODUCTION

interacted with, as well as record connections they have found. This network pushes students to

expand their knowledge by helping them find which books, artwork, etc to review next.

The Librarians, researchers and professors there have curated some of these items into collec­

tions. These collections are sets of artwork gathered around a theme. Providing this user input

is a group effort on the part of students as well as professors and librarians. This is where AI can

come to the rescue. It is widely used to find text and image similarities across different domains.

Basic examples of this are:

• Recognizing handwritten letters, and classifying them.

• Classifying documents around themes.

• Face recognition.

But finding and using these connections would still need to be done by humans for it to be fun and

engaging. For this reason, the AI was applied to a game centered around finding and strength­

ening these connections. This game is called Collect Connect. It strives to provide an enjoyable

experience to players as they create connections that an AI can judge and give opinions on, as

well as a commentary on the difference that can be found between the thought process of AI and

human users. It applies the AI’s judgement while also rewarding unexpected connections with

a different score.

Collect Connect is a prime example of educational games. It offers the opportunity to read about

unusual and historical artifacts, artwork and games, while also pushing the player to make smart

connections between them. In a period when visits are limited, games like these help museums

and organizations keep in touch with the general public.

The Collect Connect game can also be seen as collaborative work between so many people

across campus. Libraries bare their collections through APIs, researchers and students add data,

curators choose which items to showcase in their collections, and the Collect Connect game

centers around the discovery and linking of the cards.

[6] This game constitutes our contribution to Translation Networks. It combines the fields of

game development and AI to expand the network as well as provide a nice, instructional expe­

rience to the player.

2 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 1. INTRODUCTION

In this report, we will present the different requirements that we fulfilled in creating this game.

It will revolve around three main parts, the game itself as a front end, the supporting backend,

and the AI Judge.

1.2 Context

1.2.1 Concept

Collect connect is a game centering around the discovery of the University of Michigan libraries

and museums. The player’s task is finding interesting links between different objects from those

collections, and creating a chain of related cards. Those cards are stacked with the goal of cre­

ating the longest chain between the start and end card.

A card represents an item, its front being an image of this item, and its back presenting a de­

scription of this item.

Figure 1.1: An example of a card: “Caravaggio’s Medusa”

Achour Sirine, Derbel Sahar and Kacem Farah 3

CHAPTER 1. INTRODUCTION

1.2.2 Requirements

We were tasked with making the Collect Connect solo game. This included three main axis:

• Designing and implementing a playable game that was, in its essence, fun.

• Making a robust backend and database, where games could be logged down to the smallest

player action.

• Creating an AI, which is the heart of this game. It had to be capable of taking two cards as

input and computing different kinds of similarities between them. Most important were

the text comparison (description) and the image comparison.

Our starting point was an in­development Unity multiplayer game with a php file as a backend

that only took care of authentication. The architecture was not very robust, and the code did not

meet our needs.

Next, the game itself needed to be playable. In that sense, there was a need to determine by

which standards cards could be stacked on top of each other, and the scoring system to use.

We needed to determine which scoring system, if any, could be fair. We also needed to choose

which AI technologies to use, their advantages and disadvantages.

Another problem that had to be avoided was prioritising links between cards in the same collec­

tion. Making sure that interesting connections could be made was important.

Then, we had to take into account the fact that the behaviour a player has during the game, such

as the cards they stack together, the cards they choose to discard, the reasonings they provide,

can be very interesting for research purposes. Yet those informations were lost, due to the lack

of logging and a proper backend and database supporting it.

There was also the need to account for the player finding the judgement of the judge unfair, and

having no hint as to why the judgement was what it was, or how the scoring system worked.

Added to that, a simple score felt like not enough. The game is about collections, so the idea

would be to let the player collect cards. The final problem we faced was the time necessary for

the AI to issue a judgement. If the AI is too slow, the player might lose interest in the game.

4 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 1. INTRODUCTION

1.3 Project Timeline

The game development process can be divided into weekly sprints. The backend development

took off later in the process, while the AI development ran parallel to the game development

during the entirety of the semester.

Please refer to figure 1.2 for a detailed timeline of the project.

1.4 Conclusion

In this chapter, we have presented the University of Michigan client, and more specifically the

network that it will be a part of. We have stated the reason for this game’s existence, and the

context surrounding this project.

We have also presented the project timeline and objectives.

In the next chapters, we will talk in depth about the three main axis that this project was built

on: Game design and development, Logging database and API, and the AI.

Achour Sirine, Derbel Sahar and Kacem Farah 5

CHAPTER 1. INTRODUCTION

Figure 1.2: Gantt diagram of project timeline
6 Achour Sirine, Derbel Sahar and Kacem Farah

Chapter 2

Game Design and Development

2.1 Introduction

In this chapter, we present the game development process.

We first describe the methodology we have used, scrum, which is based on agile principles of

iteration and takes into account the possibility of changes in the customer requirements. Next,

we present the functional requirements that are the starting point of our work. They can be

separated into two categories: out of game and in game requirements. We mention scoring as

part of our game design. Next, we gomore in depth with descriptive diagrams detailing the game

structure. Finally, we discuss the technologies used, as well as the non functional requirements.

2.2 Methodology

We have followed during the development of this game the scrum methodology by having a

weekly meetup with clients and stakeholders. These meetings served the purpose of:

• Presenting the advancement to the clients. This included detailed presentations with re­

capitulations of the weekly work and demonstrations of the current state of the game.

• Getting the client’s feedback on the work and what they felt should be changed or im­

proved upon.

CHAPTER 2. GAME DESIGN AND DEVELOPMENT

• Clarifying any blurry information. This included explaining our thought processes and

asking for the Client’s input and approval. The client would also be able to ask questions

about the process.

• Going over the backlog and making sure deadlines were either met or rescheduled.

A backlog was agreed upon at the start, where priorities and criticalities were assigned with the

Client’s help. We followed this backlog in our development process.

We made sure to document our work as we coded. The client was provided with:

• An API documentation for the NestJS backend.

• An API documentation for the Flask AI backend.

• A documentation for each Jupyter notebook.

• Descriptions of each Unity script and what its purpose is.

During the last meetings, rather than demonstrations, the client was able to play the game and

give live feedback as they experienced gameplay. This allowed them to point out things they

liked and did not like.

The Clients were provided forms that they could fill out to give more in­depth feedback. They

were questioned about the appearance of the game, as well as their experience playing.

The most important part was making sure they were having fun and were satisfied with the

results. We would then use this feedback to make adjustments to the game, code and AI.

The semester concluded with a last meeting where everyone played the game and gave their last

feedback. This feedback was duly noted down for the next team working on this project to use.

2.3 Functional Requirements

The Unity program can be decomposed in two main parts:

On the one hand, the functionalities that go outside the game itself, for example authentication,

signing up…

On the other hand, the functionalities that go into a playable game.

8 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 2. GAME DESIGN AND DEVELOPMENT

2.3.1 Out­of­game functionalities

Figure 2.1: Out­of­game Use Case diagram

The player starts in the start screen. They will have to click to be redirected to the next screen.

If the player has never been logged in before, they will be redirected to the Login Screen, where

they can log in and go to the Home screen.

The player can choose to register instead. The player can choose to recover their account if they

have changed devices.

These three screens are presented in the next figure. 2.2

When the registering, login or recovery is complete, they are redirected to the Home screen.

If the player has logged into the game before, they will be automatically redirected to the home

screen.

The home screen presents many options to the user. They can:

• View their scoreboard:

The scoreboard is composed of the player’s previous scores. 2.4

Achour Sirine, Derbel Sahar and Kacem Farah 9

CHAPTER 2. GAME DESIGN AND DEVELOPMENT

Figure 2.2: Login, Register and Recover screens.

• View their collection:

The collection contains cards that the player has won throughout the game. 2.4

• Log out.

• Start a game.

The player can, at any time, leave the game.

10 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 2. GAME DESIGN AND DEVELOPMENT

Figure 2.3: Home, Scoreboard and Collection screens.

Achour Sirine, Derbel Sahar and Kacem Farah 11

CHAPTER 2. GAME DESIGN AND DEVELOPMENT

2.3.2 In game functionalities

Figure 2.4: Gameplay Use Case diagram

The gameplay is as follows: The player starts a game and is presented a game table, or board.

The board contains a hand of four playable cards at the bottom. They also see a start card and

end card on the board in front of them. These cards are labeled accordingly as seen in figure 2.5

The top bar contains two scores, the conformity score (or how much the AI agrees with the

player’s choices), and the deviancy score (or how much the AI disagrees with the player’s

choices.). The player can click on the question marks to view the tutorial and scoring system

explanations, as seen in figure 2.6.

The player can view a non­playable card: either the starting card, or the ending card. They can

turn this card and view its back. 2.7

The player can also view a playable card: A card from their hand. 2.8

12 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 2. GAME DESIGN AND DEVELOPMENT

Figure 2.5: Game board

Figure 2.6: Tutorial screens and settings menu.

Achour Sirine, Derbel Sahar and Kacem Farah 13

CHAPTER 2. GAME DESIGN AND DEVELOPMENT

Figure 2.7: Non playable card, front and back.

Figure 2.8: Playable card, front and back.

14 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 2. GAME DESIGN AND DEVELOPMENT

From there, the player can choose to discard a card that they do not like. The card will be

replaced by a new one from the card deck.

From there, the player can also choose to play a card.

When they place a card, the AI will judge how relevant the link is. If it is relevant, the starting

card is replaced with the played card. The player’s conformity score augments. The player can

view the detailed AI result. 2.9

Figure 2.9: Accepted link screen

If it’s not, the played card will be discarded. In that case, the deviancy score will augment. The

player will be given the chance to give a reasoning, so they can contest the AI’s judgement. 2.10

Figure 2.10: Rejected link screen

They can also pause the game, view the settings to control the volume or leave the game, as seen

Achour Sirine, Derbel Sahar and Kacem Farah 15

CHAPTER 2. GAME DESIGN AND DEVELOPMENT

in figure 2.11.

Figure 2.11: Pause and settings screen

The player can initiate their finishing move by clicking on the “Play Finisher Card” button.

After doing so, they are invited to choose the last card they will play. When viewing a card, they

will be presented with the option to play the finisher card.

This card will be compared both against the top of the deck, and against the ending card. It is

the game ending move. If both connections win, the game is won. In any other case, the game

is lost. 2.12

Figure 2.12: Final game screens

When a game is won, the starting card and the ending card get added to the player’s Collection.

These cards are then able to be seen through the Collection Screen.

16 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 2. GAME DESIGN AND DEVELOPMENT

2.3.3 Scoring

When a player plays a card, they get awarded points depending on the AI’s judgement. The AI

returns a similarity score between two cards. The Conformity score is how much the player’s

decisions conform to the AI’s decisions. The Deviancy score is howmuch the player’s decisions

deviate from the AI’s decisions.

A link is accepted if the score is above a certain threshold, and it is rejected otherwise. The

threshold is chosen manually and generally falls into the median value when sorting all possible

scores. This ensures that at least half of all possible links are acceptable, so that players will

eventually find one that works.

Normal moves:

If the score is >= threshold then Conformity score += score

Else if the score is below the threshold then Deviancy score += threshold*2 ­ score

This choice was made in order to balance the conformity score and deviancy scores. This way,

we are inverting the given similarity score.

Finishing moves: If both connections (top of deck­played card and played card­ending card)

win then Conformity score += score1 + score2 + 100

If losing game:

If both connections fail: then Deviancy score += threshold*2 ­ score1 + threshold*2 ­ score 2

If one wins and one fails then Deviancy score += failing score and Conformity score += winning

score

2.3.4 Design

Out­of­game functionalities: Screen Flow diagram

The screen flow diagram 2.13 represents the movement of the player from one screen to another.

It follows the flow described earlier in section 2.3.1.

Achour Sirine, Derbel Sahar and Kacem Farah 17

CHAPTER 2. GAME DESIGN AND DEVELOPMENT

Figure 2.13: Screen Flow diagram for unity game

In game functionalities: Class Diagram

The class diagram can be seen in figure 2.14

A Card is composed of two images, its back and its front. Images, in Unity, are contained inside

a Sprite class, that also has the file name and other attributes. The game Board is composed of

two sets of cards: Two non­playable cards and four playable cards.

The GameManager class is central to the functioning of the game. It contains all of the main

game mechanics, such as displaying (through the DisplayPanel), discarding or playing a card.

It also contains a reference to all objects on the Game scene, such as the board, its cards, the top

bar... It is attached to the canvas game object.

Displaying a card happens through the DisplayPanel. The display panel displays one card at a

18 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 2. GAME DESIGN AND DEVELOPMENT

time, so it only has a reference to one card, through the Status class. The Status class keeps track

of the currently selected Card, its position, the current AI algorithm version, and its threshold.

It is static, which makes the data that it contains accessible from anywhere in the code. This

ensures that the game has a consistent knowledge of its own status, which card is selected and

which algorithm version it is running on.

The CardManager is used to keep track of cards. It contains the card history and the card deck.

It takes care of creating the deck and dealing cards from it. The card deck is a list of cards,

generated dynamically at the start of the game from all the card images that are shipped with the

game assets. There is only one CardManager per game, because we only need to use one deck.

The ScoringSystem keeps track of the player’s current score and takes care of any changes.

There is only one ScoringSystem per game, because the player only has one pair of scores.

The Lines class stores all of the AI’s one­liners and takes care of randomizing and looping them.

There is only one Lines object per game, containing all possible lines.

The TutorialScreen class lets the player display and hide the tutorial panel. It is completely in­

dependent from other classes.

Any request to the backend or AI goes through the Request class. It helps sending GET and

POST requests, to query for two cards’ similarity, or log player behaviour.

The AIResultDatabase and AIResult classes are the model of the information returned from the

database and AI respectively, when queried for card similarity.

The Account class takes care of anything that concerns user authentication. For example, log­

ging in and out, registering, recovering an account, etc…

The Account_CollectConnectServerResults class is the model of the server response to logging

in or registering.

The UI class is used to interpret a user’s avatar colour from string to Unity Colour.

The Scoreboard takes care of the scoreboard screen, querying the database for a player’s previ­

ous scores and displaying them.

The Collection takes care of the Collection screen, querying the database for a player’s collected

cards and displaying them.

Achour Sirine, Derbel Sahar and Kacem Farah 19

CHAPTER 2. GAME DESIGN AND DEVELOPMENT

Figure 2.14: Software class diagram

20 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 2. GAME DESIGN AND DEVELOPMENT

2.4 Notions and Technologies

The game engine “Unity” was used in the creation of this game. It is a highly flexible 2D and

3D engine for game­making.

It relies both on its graphical interface, where graphical game objects are placed into a scene

view, as well as on written C# scripts. These scripts are attached to game objects as components.

They are what makes a user able to interact with a game, as well as game objects interact with

each other. They define behaviour for game objects.

Unity also lets us communicate with external API, which are crucial to the functioning of the

game currently. Two API are at work here:

• A NestJS API connected to a database in which information will be logged. The game

sends requests to this API at each player move, so any game can be recreated. This is

useful for researching player behaviour and the connections they make between cards.

• A Flask application that lets us communicate with the game AI.

The separation of these functionalities into two different API ensures that if one fails, the other

will be able to back it up. The AI container is also very slow to build (20 minutes), account­

ing for its size (3G). This contrasts with the NestJS backend, that only takes 5 minutes and is

significantly more lightweight.

2.5 Non Functional Requirements

2.5.1 Availability and Performance

To ensure a smooth playing experience, it was important to take into account the fact that there

could be network problems. We have decided that in the case of a logging error, the player would

be able to keep playing. All logging would be stopped. This would lower the logging overhead,

as well as ensure that the database stays coherent and manageable. (If a turn is lost, logging the

next steps becomes tricky). Availability and performance were also ensured with the backup

system in place: All of the card similarities exist on the database for each pair of cards. The

game always contacts the database first, because information retrieval (1s) is much faster than

Achour Sirine, Derbel Sahar and Kacem Farah 21

CHAPTER 2. GAME DESIGN AND DEVELOPMENT

computing the similarity again (4s). If the database fails for any reason, we go through the AI

and compute the similarity from scratch.

2.5.2 Portability

The choice of technologies (Unity game with two restful backends) means that the game can

be built toward multiple platforms. Indeed, one of the reasons Unity is a go­to engine for game

creation is that games that are developed with it are able to be built toward computers as well as

phones. Notably, iOS, Android, MacOS and Windows.

2.6 Conclusion

In this chapter, we have discussed in great detail the way the game was designed and imple­

mented. The game would however hardly work without the support of its NestJS backend and

AI. We will discuss these next.

22 Achour Sirine, Derbel Sahar and Kacem Farah

Chapter 3

Database and API

3.1 Introduction

Collect Connect is as much of a game as it is an experiment. Through it, we hope to collect

different types of data on the behaviour of the users, as well as crowdsource the connections

between the different artwork, in the hopes of finding interesting connections to feed the Trans­

lation Networks work, as well as making the AI better in the future.

A solid infrastructure was needed to make sure this data could be saved and easily retrieved.

Another need was for something to act as a backup to the AI. Pre­computing results and saving

them to a database would mean faster and more reliable access to the information. This was

preferable to live­computation, which would take longer and might fail.

To this end, we created a database schema that would be able to help study user behaviour and

thought processes. We then built a NestJS backend on top to be able to access this database.

We then deployed this NestJS backend through Docker. This backend now lives on an apache

server image.

CHAPTER 3. DATABASE AND API

3.2 Database

3.2.1 Purpose

The database has 5 main purposes :

• Saving the players’ account data : We needed to save the player’s account information

along with their collection of saved cards and the avatar color that they chose.

• Saving the AI judge results : Having saved all the cards (their names, their curators and

the collection that they are a part of) in the database, we then compute all the possible

two­card combinations in order to pre­compute the AI’s judgement of the similarity of

these pairs.

• Saving the players’ reasonings for playing certain cards together : The point of this is to

prepare the ground for implementing a reinforcement learning algorithm. The algorithm

would take into consideration the frequency of two cards being played together and the

reasonings given by the players in order to learn to accept the links that humans found but

were previously missed by the AI judge.

• Logging the player’s gameplay for research purposes : The client requested that we save

the entirety of the gameplay and provided us with a list of questions that they needed to

be able to query the database for the answers to, for their research. The following is the

list of said questions :

– Questions concerning the game:

* What is the player’s name, score and have they won the game ?

* What is the game’s start time, end time and duration ?

* What are the cards in the player’s collection ?

* How many pauses did the player take during the game and how long did they

last ?

24 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 3. DATABASE AND API

* How many turns are taken before a game is concluded ?

* How many times did a player choose to look through the deck ?

– Questions concerning a specific turn in a game:

* What are the cards in the player’s hand at the beginning of the turn ?

* What is the turn’s starting card ?

* What is the turn’s ending card ?

* What was the turn’s played card ?

* How many cards did the player draw during a turn ?

* What were the drawn cards during a turn ?

* When did the turn start/end and how long did it last ?

* Was the ‘play finisher card’ button pushed during a turn ?

* How many actions (play/draw card) did the player make before pushing the

connect button ?

* Was the played card of a turn accepted or rejected ?

* How many points did the player gain from a turn ?

* How many cards were browsed in a turn ?

– Questions concerning rejected card links :

* What are the cards in the player’s hand at the beginning of the turn ?

* What is the most frequently chosen reasoning for a given card pair ?

* What are the most common reasonings for a failed link ?

Achour Sirine, Derbel Sahar and Kacem Farah 25

CHAPTER 3. DATABASE AND API

3.2.2 Design

Simplified schema

After studying the main functions of our database we came with the following design (3.1)

showcasing the different database entities and the “has n” type relationships between them.

Figure 3.1: Database simplified schema

Starting off with the “players” table containing the players login information, a player has one

entry in the “avatar_color” table and one entry in the “player_collection” table.

The “player_collection” table is used to save the cards that the players kept in their collections.

A player’s collection is composed of zero or more entries in the “cards” table.

The “cards” table has information regarding the cards (name, curators, collection…). Each

“cards” entry has one associated entry in the “collections” table which contains all card collec­

tions.

The “pauses” table is for saving when the players pause and resume their games.

The “games” table saves data concerning the games such as the player, the start time, end time,

score, whether the game was won or not...

26 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 3. DATABASE AND API

A game is played by one player, which means that each “games” entry would have one associ­

ated entry in the “players” table. Every entry would also have one or more entries in the “turns”

table since a game is composed of multiple turns and zero or more entries in the “pauses” table.

Every game has one entry in the “cards” table that represents the end card and another one that

represents the start card.

The “player_cards” table is for keeping track of the players’ hands during each turn. Every item

in this table is composed of four items in the “cards” table.

The “drawn_cards” table keeps track of the cards that the player drew and discarded during a

turn. It has two entries in the ”cards” table : a discarded card and a drawn card.

The “hints” table is for saving the hints that were given to the player. A hint can either consist

of highlighting a playable card or displaying the text “draw a new card”. It can have zero or one

entry in the “cards” table: if there isn’t a card in the hint entry, then the hint was “draw a new

card”.

Note: Hints were an additional feature that we set the grounds for in the backend but did not

end up implementing in the game.

“rejected_links” contains the reasoning that the player gives for two cards that were rejected by

the AI judge.

The “links” table contains all the possible links that can be made. It has two “cards” entries and

zero or more rejected_links (to save the reasoning inputted by the player for that specific link)

Every entry in the “stats” table contains one link and its corresponding AI judgement.

The “browsed_decks” table contains the number of cards that they player browsed during a turn.

Note: This was a feature that we prepared for in the backend but ended up not implementing in

the frontend.

The “turns” table saves all the data concerning a specific turn (start time, end time, points…). It

has one link (meaning the turn ends when a card is played) zero or more “drawn_cards” entries

and one “player_cards” entry. During one turn, a player can ask for hints which means that a

turn has zero or more “hints” entries associated with it .

Achour Sirine, Derbel Sahar and Kacem Farah 27

CHAPTER 3. DATABASE AND API

Detailed schema

We chose to set up a MySQL database since we are obviously dealing with relational data and

because the client already had a MySQL database set in place for the multiplayer version of our

game and wanted to eventually merge ours with it.

Figure 3.2: Database detailed schema

This schema is the implementation of the simplified design. It has all the previously listed tables

along with the necessary junction tables needed for implementing Many­to­Many relationships

between entities.

Here the “cc_solo_algorithm_version” table was added to save the different AI algorithm ver­

sions in order to keep track of the changing judgements.

28 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 3. DATABASE AND API

3.3 API

3.3.1 Purpose

The primary need for the NestJS API is to act as a backend and logging tool for the solo player

version of Collect/Connect.

It has 3 main tasks :

• Managing players’ accounts:

– Signing up

– Logging in

– Logging out

– Recovering account

– Generating a new recovery key

– Setting/Getting the player’s bio

– Setting/Getting the player’s avatar color

– Getting the player’s collection

– Getting the player’s highscores

• Logging gameplays:

– Starting a new game

– Playing a card

– Discarding a card

– Pausing/Resuming the game

– Saving a reasoning for a rejected link.

– Quitting the game

• Saving AI judge results:

Achour Sirine, Derbel Sahar and Kacem Farah 29

CHAPTER 3. DATABASE AND API

– This is done with the purpose of time optimization: the game checks if the results

are already in the database (which takes about 1 second) before running the AI judge

(which takes around 4 seconds).

3.3.2 Design

Code wise, we opted for using the microframework nestjsx/crud in order to automatically gen­

erate CRUD controller endpoints for most of the database tables. We then had to create a service

for each database entity as the nestjsx/crud framework required.

The Many­to­Many relations are not handled by the microframework so we had to implement

the CRUD operations for them manually.

The API is divided into 3 main modules.

Figure 3.3: API modules diagram

Auth Module

This module manages the player authentication (register, login...), accounts (get new recovery

key, recover account...) and profile personalization (change player bio, change player avatar­

color…).

30 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 3. DATABASE AND API

Figure 3.4: AuthModule services class diagram

We used bcrypt hashing to safely save the recovery keys and sha256 hashing for the authentica­

tion keys.

Although AvatarColorService and PlayerService don’t have any functions, their existence is re­

quired by the nestjsx/crud microframework.

UserService handles account management.

AuthService handles all authentication needs and uses some of the functions provided byUserSer­

vice.

Card Module

This module handles everything card related, from saving card details (name, collection…) to

links and stats (AI judge comparison results).

Achour Sirine, Derbel Sahar and Kacem Farah 31

CHAPTER 3. DATABASE AND API

Figure 3.5: CardModule services class diagram

CardService andCollectionService handle getting the cards and collections. StatsService, LinkSer­

vice and RejectedLinkService handle the links and AI judge comparison results.

Game Module

This module is responsible for logging the entirety of the gameplay.

32 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 3. DATABASE AND API

Figure 3.6: GameModule services class diagram

Although HintsService doesn’t have any functions, its existence is required by the nestjsx/crud

microframework.

3.3.3 Access levels

There are 3 different levels of access to this API:

• Public access : Anyone can send requests and get the desired responses with no need for

a token or authentication key.

• Player access : Only players can get the desired response from the API since it asks for a

username and the corresponding authentication key.

• Admin access : Only someone who has the admin token can get the desired responses.

What is an authentication key ? An authentication key is a randomly generated string of

Achour Sirine, Derbel Sahar and Kacem Farah 33

CHAPTER 3. DATABASE AND API

characters that is assigned to a player when they log in and is then used by this player to send

requests to the API.

A hashed version of the key is saved in the database using the sha256 hashing algorithm.

What is an admin token ? An admin token is a secret server environment variable that al­

lows whoever has it to perform CRUD (Create­Read­Update­Delete) operations on all database

tables.

3.3.4 API endpoints

Public access

These are some of the actions that can be performed by anyone.

Register:

When registering, the player has to provide a unique username and their device ID.

The device ID is used as a password for the account, which means that a player can only connect

to that account from that specific device.

The recovery key contained in the response is a random set of words that is hashed and saved

in the database using the bcrypt algorithm.

This key allows the player to move their account from one device to another.

Endpoint /auth/register
Method POST

Table 3.1: Register endpoint

Recover Account :

If a player wants to recover their account, they must provide their recovery key along with their

username and the device id of the device that they’re moving their account to.

Endpoint /auth/recover
Method POST

Table 3.2: Recover endpoint

Get Percentage :

After the AI judge judges the link between 2 cards, this request gets the saved result from the

34 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 3. DATABASE AND API

database.

Endpoint /stats/percentage/:algorithm_version/:card_1/:card_2
Method GET

Table 3.3: Get percentage endpoint

Login :

When logging in, the player has to provide their username and their device ID. The API then

returns an authentication key that the player can use for requests that require player access.

Endpoint /auth/login
Method POST

Table 3.4: Login endpoint

Player Access

This level of access requires that the player sends their authentication key (that they acquired

after logging in) in the request headers.

At this level, there is a long list of actions that can be performed including account management

and gameplay logging.

Following are some examples of actions that can be performed by players :

Start a new game:

Endpoint /games/new­game
Method POST

Table 3.5: New game endpoint

Quit a game :

Endpoint /games/:game/quit
Method POST

Table 3.6: Quit game endpoint

Play a card :

If the players played a finisher card, then they must include in the request body 2 extra ele­

ments: end_rejected and end_percentage which represent whether the link with the end card

Achour Sirine, Derbel Sahar and Kacem Farah 35

CHAPTER 3. DATABASE AND API

was rejected or not, and the percentage given by the AI judge.

In the case of a finisher card, the API returns as a JSON object containing a game and a turn

object. The turn object represents the final turn in the game.

If the AI judge result sent in this request body (percentage and rejected) is not already saved in

the database (stats table) then a new entry is created and saved containing these results

Endpoint /turns/play­card
Method POST

Table 3.7: Play card endpoint

Admin Access

The admin access allows complete database access along with a few other actions. The upcom­

ing requests require that the admin token is in the headers as “admin­token”.

­ CRUD Operations :

The microframework nestjsx/crud was included in this project in order to automatically generate

the CRUD services and controller endpoints.

­ Other Actions :

Add percentage :

This adds a new Ai judge result to the database.

This request is used for seeding the database with pre­computed AI judge results.

Endpoint /stats/add
Method POST

Table 3.8: Add percentage endpoint

Get collection or card by name :

It is possible to get more information on a card or collection by calling these endpoints:

36 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 3. DATABASE AND API

Endpoint /collections/by­long­name/:name
Method GET

Table 3.9: Get collection by name

Endpoint /cards/card­by­name/:name
Method GET

Table 3.10: Get card by name endpoint

Add new card :

Endpoint /cards/new­card
Method POST

Table 3.11: Add new card endpoint

3.4 Non­functional requirements

3.4.1 Portability :

The choice of technologies that we made (NestJS and MySQL) makes our work portable i.e.

easily transferable from one machine/system/container to another. And the fact that everything

was later on packaged in a container makes it even more portable.

3.4.2 Documentation :

We made sure to write long and detailed technical documentations for the database and the API

in order to make it easier for the next team working on our project to pick up where we left off.

3.4.3 Scalability and Availability :

The client’s choice to use containers to deploy our API made it easily scalable as they would

just need to duplicate the container if the need ever rises. It also contributed to its availability

since containers can easily be restarted if an issue comes up.

Achour Sirine, Derbel Sahar and Kacem Farah 37

CHAPTER 3. DATABASE AND API

3.5 Conclusion

In this chapter, we presented the database design and explained our reasoning for it. We also

presented the correspondingAPI and it’smain functions. Finally, we talked about pre­computing

and saving the AI judge comparison results in the database.

In the upcoming chapter, we will talk in depth about the AI judge and how it judges the links

between cards.

38 Achour Sirine, Derbel Sahar and Kacem Farah

Chapter 4

AI Judge

The AI is the beating heart of this game. It is as much of a game mechanic as it is a character,

responding to the player’s input and comparing cards before giving its final judgement. It is

therefore a judge. The AI is tasked with taking all of the information concerning two cards, and

scoring the similarity between them on a scale of 0 to 100, 0 being completely dissimilar and

100 being identical.

There are two types of data concerning each card: textual data and visual data.

The textual data is the description, collection and curator.

The visual data is the card image, which shows the object the card represents. We have thus

chosen to work with NLP to compute the similarity between the textual datapoints, and image

similarity with CNNs for the images.

These two approaches are combined into one comparison function that outputs the final simi­

larity.

4.1 Methodology

The methodology used during this project is CRISP­DM [10]. (CRoss­Industry Standard Pro­

cess for Data Mining) which is an open standard process model used for data mining and pre­

dictive analytics released by IBM in 1999. this methodology is 6 steps process:

• Business Understanding: during this step we try to focus on understanding the project

CHAPTER 4. AI JUDGE

Figure 4.1: Crisp­DM methodology[2]

from a business perspective, determine business objectives and produce a project plan.

• Data Understanding: we then focus on acquiring the data, examining it, digging deeper

into it and cleaning it.

• Data Preparation: this phase prepares the data for modeling: we select data, clean it and

integrate it.

• Modeling: during this phase we determine which model to use, build it and assess it.

We iterate model building and assessment until we find the model that gives us the best

results.

• Evaluation: we evaluate results, review the process and determine the next steps.

• Deployment: we focus during this phase on deploying the model and plan its monitoring

and maintenance.

40 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 4. AI JUDGE

4.2 Dataset

The dataset we worked with contains 77 instances as of now. However, it can easily be replaced

by a larger dataset in the future. For each instance we will be using the description, curator,

collection and image to compute the final similarity between two cards. The definition of each

data point is as follows:

Description: small paragraph that is placed at the back of the card to help the player get more

information about the card. Curator: the person in charge of collecting art pieces and creating

card collections. Collection: the collection that the card belongs to Image: the image at the front

of the card.

In order to compare two cards we need to compare different card features. We have two types

of features: text and images. Text typed features are: description, curator and collection with

which we will be using the NLP approach. Images typed features are: the card images with

which we will be using a computer vision approach.

4.3 Natural language processing

Natural Language Processing is an artificial intelligence subfield where computers are able to

process, understand and analyze human language. It’s a way that helps computers to communi­

cate with humans and be able to read text, hear speech, recognize sentiments and determine the

important parts of a text.

4.3.1 Text preprocessing

Removing stopwords: Stopwords [4] are the most common words used in any language that

don’t add much to the meaning of the sentence, such as “the”, “ is” “at”, “which”, etc... We have

decided to use nltk so we can filter them out. nltk.corpus provides a list of english stop words

we can use in our AI.

Stemming words: Stemming [11] a word is reducing inflected words to their root form, it is an

important part of text preprocessing and it can make a significant difference in the model output.

Achour Sirine, Derbel Sahar and Kacem Farah 41

CHAPTER 4. AI JUDGE

4.3.2 Model implementaion:

To be able to figure out which model was the best fitted to our needs, we have gone through

different experiments such as:

• Calculating the similarity with and without word stemming

• Calculating the similarity with and without preprocessing

• Calculating the similarity with TextRank

• Calculating the similarity using cosine similarity

• Calculating the similarity using Bert

• Calculating the similarity using Jaccard similarity

• Calculating the similarity using words mover distance

Below is a definition of each model we tried:

TextRank [8]: is a keyword extraction and text summarization algorithm

Cosine similarity: between two words: each word is represented by a vector and the cosine

similarity of the words is the cosine of the angle between the two non null vectors, it’s output

range is in [0,1] where 0 is the least similar and 1 is the highest similar. the formula is Similarity

= (A.B) / (||A||.||B||) where A and B are vectors.

Jaccard similarity: defined as the intersection between two sentences divided by the intersec­

tion of the two sentences which are the common words between the two. The mathematical

formula is:

Figure 4.2: Jaccard similarity formula

42 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 4. AI JUDGE

Words Mover distance: It measures the semantic similarity between two sentences using

word2vec embeddings. The euclidean distance is used to calculate the distance between two

words and then it is summed up the get the WM distance.

Bert: Bidirectional Encoder Representations from Transformers[9] Bert model developed by

Google, it learns contextual relations between words (or sub­words) in a text and outputs the

similarity between the two words that ranges between 0 and 5. As opposed to directional mod­

els, which read the text input sequentially (left­to­right or right­to­left), the Transformer encoder

reads the entire sequence of words at once. Therefore it is considered bidirectional This charac­

teristic allows the model to learn the context of a word based on all of its surroundings.

Example of description comparisons:

Card name Card description

Cleanliness is
Next to Godli­
ness

The phrase, ”Cleanliness is next to godliness,” is first The phrase,
”Cleanliness is next to godliness,” is first attributed to the 18th­century
theologian John Wesley. Here we see two ideas, order and nature, now
interpreted and juxtaposed in the recesses of our modern minds with ab­
surd results. Has the awesome grandeur of nature somehow increased,
or have our hygenic rituals descended into meaninglessness?

Apsara Warrior

Cambodian artist Ouk Chim Vichet’s “Apsasra Warrior,” on display at
the U­M Museum of Art, originated from the Peace Arts Project Cam­
bodia, designed to promote both nonviolence and young Cambodian
artists. The piece was donated to the museum by Guy and Nora Bar­
ron.

The Kādambarī
of Bāna comic book

Certain noble
plays of Japan Three hundred and fifty copies of this book have been printed

Table 4.1: Card names and their corresponding descriptions

The first pair of cards are not related based on the descriptions. The second pair is similar since

both cards are about books. 4.1

Achour Sirine, Derbel Sahar and Kacem Farah 43

CHAPTER 4. AI JUDGE

Card1
Cleanliness is
Next to Godli­
ness

The Kādambarī
of Bāna

Card2 Apsara Warrior Certain noble
plays of Japan

Cosine similarity 0.0 0.235
Jaccard similarity 0.0 0.1
World’s mover distance 3.06 2.586
Cosine similarity with textRank keywork ex­
traction 0.88 0.46

Jaccard similarity with textRank keywork ex­
traction 0.818 0.21

World’s mover distance with textRank keywork
extraction 0.79 0.64

Bert model without word stemming 0.533 0.7641
Bert model without preprocessing 0.334 1.449

Table 4.2: Cards name and their corresponding descriptions

• For cosine and jaccard similarity without keyword extraction we don’t see big diffrence in

results between two related cards and two non related cards. For world’s mover distance

with and without we see that the distance between the first and the second pair but results

on various other paires weren’t convenient.

• For cosine and jaccard similarity with keyword extraction we see that the fisrt paires are

more similaire than the second which is false.

• For Bert model both values without stemming and without preprocess makes sense but

results on larger sample of cards shown that bert model without preprocessing is more

efficient.

After running tests and comparing the results of each experiments we got the best results by

using bert model without preprocessing to calculate the description similarity and the cosine

similarity to calculate the collection similarity.

The curator similarity is calculated by simply returning 1 if the two cards were curated by the

same curator and 0 otherwise.

44 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 4. AI JUDGE

4.4 Computer vision

Since our data is not labeled we will be using a pretrained model. We will be comparing images

to measure how similar two card images are.

4.4.1 Models:

As usual, we started by trying different models to determine the one that gives us the best results.

The list of the models that were implemented in this process:

DeepAI[3]:a deployed Api that compares how visually similar two images are, used through a

post request, the lower the output is the more similar the images are. If the output is 0 the images

are identical

VGG19[5]: a 19 layers convolutional network with a pre­trained version trained on more than

one million images from the ImageNet database that returns the structural similarity between

two images.

Turicreate[1]: The similarity between images is calculated using the resNet­50 model provided

by turicreate which is a high­level framework developed by Apple. 4.3 ResNet­50 is a powerful

convolutional neural network that is 50 layers deep that is able to detect shapes and forms. The

model architecture is explained in the following

• Convolutional layer: It is always the first layer in a convolutional neural network, it em­

phasizes chosen characteristics in the source image by applying a predefined matrix on

the input and passes the result to the next layer.

• Pooling layer: It’s a way of sub­sampling to reduce the size of the image while preserv­

ing its relevant characteristics. Average pooling function outputs the average of the input

patch values.

• Batch normalization layer: As each layer observes inputs produced by the set of layers

that precede it, it would be advantageous to obtain centered and reduced inputs for each

Achour Sirine, Derbel Sahar and Kacem Farah 45

CHAPTER 4. AI JUDGE

Figure 4.3: ResNet­50 model architecture [7]

layer. The normalization layer is a component introduced between the layers of the neural

network and continuously takes the output of a particular layer and nor­ malizes it before

sending it to the next layer as input.

• Activation Layer: It determines how good the network model will learn from the data , it

is a key part of the neural network design sum theweighted input to pass it to the next layer.

4.4.2 Results:

Models results comparaison is illustrated in the table below with three different pairs of images

as an example

We can clearly see that the second two cards are very similar and the last two ones are less sim­

ilaire but the DeepAi api outputs tha same value for both of them.

46 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 4. AI JUDGE

Figure 4.4: Sample of cards to test models on

DeepAI VGG19 Turicreate
card1 card2 24 0.14 14.94
card3 card4 32 0.17 19.17
card5 card6 32 0.15 22.7

Table 4.3: Comparison between different image similarity models

VGG19 returns values that indicates that the first pair is less similaire that the third pair which

is false.

With more results on larger sample of cards we can say that turicreate output values are the most

effcient.

Based on the results we got when we ran the model on all possible pair of cards, turicreate

ResNet50 model seemed to be the best option.

4.4.3 Model implementation:

Step 1: We load the images

Step2: We create the model

Step3: We create a similarity graph from which we can retrieve the k nearest neighbors to an

input image.

Achour Sirine, Derbel Sahar and Kacem Farah 47

CHAPTER 4. AI JUDGE

4.4.4 Computer vision output:

The turicreate ResNet50 model get as an input an image and returns the rest of the images in the

database ordered by similarity from most to the least similar image. 4.5

Figure 4.5: Turicreate output

4.4.5 Weighting the data:

We had to give different weights to the outputs of the AI. These weights went through different

iterations in order to feel right for players. Indeed, after two play testing sessions we noticed

that the images that were from the same collection were more likely to be accepted. This did not

conform to the Client’s vision of the AI encouraging clever and unexpected connections. We

tried different weights for each link type and the best values for the weights to keep the game

playable, interesting and fun. In the end, we decided on the following weights: description

similarity: 47/3 image similarity: 80 collection similarity: 5 curator similarity: 5 collection and

curator similarity has the lowest weights since its an easy connection to guess and it doesn’t

require too much effort.

Final output = collection similarity * 5 + curator similarity * 5 + description similarity * 47/3 +

image similarity * 80

48 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 4. AI JUDGE

4.5 Flask backend:

We have developed a simple Flask API so that the game would be able to communicate with

the AI through restful requests. The API takes a post request with the ids of the two cards and

returns the similarities between 2 cards

4.6 Non­funtional requirements

4.6.1 Portability:

the Ai is deployed through on a docker container service which makes it easy to use on different

machines.

4.6.2 Documentation:

Every part of the AI is well documented to make future changes easy.

4.6.3 Modifiability:

It’s easy to add new AI functions to the game since the Ai is an independant api, where the

comparator calls the functions that are put in the AIfunctions.py file

4.6.4 Performance:

The AI was used to pre­process all of the possible card pairs. That way, the response time was

lowered from 4 seconds (live computation) to 1 second (information retrieval from the database).

4.6.5 Scalability:

Deploying the AI on a container makes it easy to duplicate the container in case of high demand.

Achour Sirine, Derbel Sahar and Kacem Farah 49

CHAPTER 4. AI JUDGE

4.7 Conclusion:

In this chapter we talked about different models we implemented. We explained each one of

them and compared their results. We based our choice of the final model on these experiments.

Since our data isn’t labeled we had to manually evaluate the chosen model’s performance. The

outputs we get from each model are summed up with specific weights to make the final result

which is the similarity between the two cards.

50 Achour Sirine, Derbel Sahar and Kacem Farah

Chapter 5

Evaluation and Deployment

5.1 Introduction

With the game development, backend and AI explained, we can now speak about the final so­

lution as a whole. These three pieces are integral to its functioning, and none of them can exist

without the others.

The game relies on both the backend and AI, querying them for card similarities and logging.

In this concluding chapter, we will talk about the evaluation and deployment of our solution.

5.2 Evaluation

5.2.1 Client feedback and Playtesting

To guarantee the clients’ satisfaction we organized two playtesting sessions with each major

game version, where we had the chance to witness in real time the players’ interaction with the

game. We took note of any difficulties they may have come across and had detailed discussions

about the different parts of the game. Each playtesting session was followed by them filling an

anonymized google form so that we could get more specific feedback about their experience

with that version of the game. The forms had the following questions:

CHAPTER 5. EVALUATION AND DEPLOYMENT

• Did you encounter bugs while playing? If so please give a brief description of the bug

and what you were doing before it came up.

• Was the game slow ?

• Did you find the AI judge to be too strict ?

• Did you find the AI judge to be too lenient ?

• Do you have any suggestions for naming the AI judge?

• What do you think of the scoring system ?

• Do you like the design of the game ?

• If you didn’t like the game design, do you have any suggestions for us to make it better?

• Did you like the background music ?

• Do you have any suggestions for future improvements ?

• Please give us a rating.

The most important concerns that they raised were the following:

• The scoring system seemed a bit unclear at first, with the final similarity not being the

exact number that was added to the score. This concern can be seen in themixed responses

we had in the first playtesting poll 5.1:

In response to this, we have simplified the scoring system so it would make more sense

to the players.

• The scoring system favouring cards that were from the same collection: Which brought

us to rethinking the weighting of the final similarity.

• The AI judge only providing a similarity score felt very arbitrary. 5.2 We added the func­

tionality that let the player display more information on the score.

• The similarity result screen necessitating a player action to close instead of closing after

a certain amount of time, which we changed later.

52 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 5. EVALUATION AND DEPLOYMENT

Figure 5.1: Feelings on the scoring system

Figure 5.2: Feedback on the scoring system

• The game feeling like it revolved around trying to guess what the AI would like to see.

We remedied this by changing the scoring system slightly to give personality to the AI,

as well as giving a choice to the player on the way they would like to play. This went

through well with the client, as portrayed by this review: 5.3

Figure 5.3: Feedback on the AI as a character

Achour Sirine, Derbel Sahar and Kacem Farah 53

CHAPTER 5. EVALUATION AND DEPLOYMENT

5.2.2 Performance

Running the AI locally on our computers takes 2 seconds to give the final response but when

running it on the server it takes about 4 seconds. In order to enhance the server speed we needed

to increase our memory allocation in the container service and to store pre­computed similarities

between each pair of cards into the database for further use. So whenever we need to calculate

the similarity between two cards we check if the wanted result already exists in the database. If

that’s the case the call to the database will take around 1 second to return the result. If not we

call the AI to compute it which takes around 4 seconds.

These measures ensured an overall good experience for the clients, with the following answers

given: 5.4

Figure 5.4: Feedback on the performance aspect

In the future, adding reinforcement learning to the game will play a big role in enhancing its

performance and making the AI more intelligent. If a card is rejected the players input a reason­

ing as to why they thought the two cards were similar and why they saw a connection that the

AI wasn’t able to see. The game will take more into consideration this human perspective and

evolve with time.

54 Achour Sirine, Derbel Sahar and Kacem Farah

CHAPTER 5. EVALUATION AND DEPLOYMENT

5.3 Deployment

Figure 5.5: Deployment diagram

The player only has to download the game executable on their computer or phone, without the

need for installation. The game is immediately playable on the player’s machine. The game

then sends requests to the API for logging the gameplay and authentication. The API resides

in a container in the container service. The game also sends requests to the AI Judge when the

player asks for details on a judgement, or as a backup if the API is unavailable. The API can

also be found on this same container service. The API then queries the database. The database

resides in the Amazon RDS (Amazon Relational Database Service) which can only be accessed

from within the Container Service. The Container Service resides in the cloud.

5.4 Conclusion

Ultimately, this project, completed with The University of Michigan, aimed to lead the students

to the real­life collections that this game portrays. Its goal is to encourage immersion in art, as

well as finding meaning and similarities in unusual places.

Achour Sirine, Derbel Sahar and Kacem Farah 55

CHAPTER 5. EVALUATION AND DEPLOYMENT

In this report, we have documented the work process used to implement our solution. We first

presented the project’s context, concept and requirements. The functional scope of the project

was later built on this foundation. We, then, meticulously designed our solution to meet all of

the agreed upon requirements (both functional and nonfunctional).

We found that the best way to tackle this project was to divide it into 3 separate sub­projects

corresponding to our 3 main axes : game development (frontend), database and API (backend)

and the AI judge. Finally we went into details explaining these 3 axes, their implementations

and the links between them.

One of the biggest challenges that we encountered while working on Collect/Connect was as­

sessing different AI algorithms and trying to find the ones giving the best results. The issue

was that we did not have set metrics for judging the results so we had to test algorithms with

different cards then visually assess them and compare results. Another challenge that we came

across while working on the AI part, is choosing the right weights for the different comparisons

without making the AI judge too strict or too forgiving. Finally, we struggled a bit with trying

to save the huge amount of required data in the database all the while optimizing as much as

possible.

As for future improvements, we implemented the backend while keeping in mind a list of fea­

tures to be added by the next team working on Collect/Connect. The first feature is hints: if a

player struggles with finding the right action to take, they could ask the game for a hint which

would then get the comparison results for all cards in the player’s hand and choose the best one

to play. If the game found all links to be unacceptable, it would then suggest that the player

discards the worst card and draws a new one. Another feature to add, is browsing the deck of

played cards during the game. Lastly, an important feature to add is reinforcement learning

which would make the AI judge take into consideration the frequency of links and reasonings

given by the players before accepting or rejecting a link.

Thank you for your attention.

56 Achour Sirine, Derbel Sahar and Kacem Farah

Bibliography

[1] Apple. Turi Create API Documentation. https://apple.github.io/turicreate/

docs/api/.

[2] AnaAzevedo andM.F. Santos.KDD, SEMMAANDCRISP­DM:APARALLELOVERVIEW.

https://recipp.ipp.pt/bitstream/10400.22/136/3/KDD-CRISP-SEMMA.pdf.

[3] DeepAI. Image Similarity API. https://deepai.org/machine-learning-model/

image-similarity.

[4] GeeksforGeeks.Removing stopwordswith NLTK in Python. https://www.geeksforgeeks.

org/removing-stop-words-nltk-python/.

[5] Aakash Kaushik. Understanding the VGG19 Architecture. https://iq.opengenus.

org/vgg19-architecture/#:~:text=VGG19%20is%20a%20variant%20of,VGG19%

20has%2019.6%20billion%20FLOPs..

[6] Lynne Raughley. In this game, everyone wins. http://hdl.handle.net/2027/spo.

14770791.2020.008. [Online; accessed 16­June­2021]. 2020.

[7] ResNet50 architecture. https://www.researchgate.net/figure/Left-ResNet50-

architecture-Blocks-with-dotted-line-represents-modules-that-might-

be_fig3_331364877.

[8] Jan Wijffels. Textrank for summarizing text. https://cran.r-project.org/web/

packages/textrank/vignettes/textrank.html.

[9] Wikipedia. BERT (language model). https : / / en . wikipedia . org / wiki / BERT _

(language_model).

https://apple.github.io/turicreate/docs/api/
https://apple.github.io/turicreate/docs/api/
https://recipp.ipp.pt/bitstream/10400.22/136/3/KDD-CRISP-SEMMA.pdf
https://deepai.org/machine-learning-model/image-similarity
https://deepai.org/machine-learning-model/image-similarity
https://www.geeksforgeeks.org/removing-stop-words-nltk-python/
https://www.geeksforgeeks.org/removing-stop-words-nltk-python/
https://iq.opengenus.org/vgg19-architecture/##:~:text=VGG19%20is%20a%20variant%20of,VGG19%20has%2019.6%20billion%20FLOPs.
https://iq.opengenus.org/vgg19-architecture/##:~:text=VGG19%20is%20a%20variant%20of,VGG19%20has%2019.6%20billion%20FLOPs.
https://iq.opengenus.org/vgg19-architecture/##:~:text=VGG19%20is%20a%20variant%20of,VGG19%20has%2019.6%20billion%20FLOPs.
http://hdl.handle.net/2027/spo.14770791.2020.008
http://hdl.handle.net/2027/spo.14770791.2020.008
https://www.researchgate.net/figure/Left-ResNet50-architecture-Blocks-with-dotted-line-represents-modules-that-might-be_fig3_331364877
https://www.researchgate.net/figure/Left-ResNet50-architecture-Blocks-with-dotted-line-represents-modules-that-might-be_fig3_331364877
https://www.researchgate.net/figure/Left-ResNet50-architecture-Blocks-with-dotted-line-represents-modules-that-might-be_fig3_331364877
https://cran.r-project.org/web/packages/textrank/vignettes/textrank.html
https://cran.r-project.org/web/packages/textrank/vignettes/textrank.html
https://en.wikipedia.org/wiki/BERT_(language_model)
https://en.wikipedia.org/wiki/BERT_(language_model)

BIBLIOGRAPHY

[10] Wikipedia. Cross­industry standard process for data mining. https://en.wikipedia.

org / wiki / Cross - industry _ standard _ process _ for _ data _ mining. [Online;

accessed 22­May­2021].

[11] Wikipedia. Stemming. https://en.wikipedia.org/wiki/Stemming.

58 Achour Sirine, Derbel Sahar and Kacem Farah

https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining
https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining
https://en.wikipedia.org/wiki/Stemming

	492fcc63-3903-40a8-acaf-7bd69b554e55.pdf
	List of Figures
	List of Tables
	Introduction
	General introduction
	Context
	Concept
	Requirements

	Project Timeline
	Conclusion

	Game Design and Development
	Introduction
	Methodology
	Functional Requirements
	Out-of-game functionalities
	In game functionalities
	Scoring
	Design

	Notions and Technologies
	Non Functional Requirements
	Availability and Performance
	Portability

	Conclusion

	Database and API
	Introduction
	Database
	Purpose
	Design

	API
	Purpose
	Design
	Access levels
	API endpoints

	Non-functional requirements
	Portability :
	Documentation :
	Scalability and Availability :

	Conclusion

	AI Judge
	Methodology
	Dataset
	Natural language processing
	Text preprocessing
	Model implementaion:

	Computer vision
	Models:
	Results:
	Model implementation:
	Computer vision output:
	Weighting the data:

	Flask backend:
	Non-funtional requirements
	Portability:
	Documentation:
	Modifiability:
	Performance:
	Scalability:

	Conclusion:

	Evaluation and Deployment
	Introduction
	Evaluation
	Client feedback and Playtesting
	Performance

	Deployment
	Conclusion

